Supplementary Note 1: C-type Lectins

Authors: Chris Cordola

Introduction

C-type Lectins (CTLs) are carbohydrate binding receptors which connect to mostly a wide range of carbohydrate structures (Cambi and Figdor 2003) and proteins as well (Dodd and Drickamer 2001). This gives them the ability to recognize pathogen associated molecular patterns (PAMPs) detecting different pathogens and possibly cancerous cells (Cambi Figdor 2003). They can be involved in transmission of signals after binding to a ligand. Some of them are also known as cell adhesion molecules (CAMs), which enable the transport of immune cells. These are involved in cells traveling to the site of infection through tissue proliferation during the immune response. The C-type Lectins can be either bound to the membrane by a transmembrane region or free-roaming (Weis et al. 1998). The silencing of these genes could lead to the death of an organism, since it will have difficulty preparing an immune response since a C-type Lectin might not be able to detect an organism through carbohydrates usually found on their cell surface, and the absence of CAMs will prevent immune cells from breaking down pathogens as they infect the organism.

Materials and Methods

The C-type Lectin sequences for the following insects were collected and used to search the genome of *Diaphorina citri*: *A. pisum, D. melanogastor, O. fasciatus, A. gambiae, A. aegypti, C. quinquefasciaitus* and *C. lectularius*. These sequences were used in the BLAT search tool in Web Apollo and BLAST from I5K to find gene model predictions. A total of 10 models were found and annotated, correcting anything that was not supported by evidence tracks like RNA sequence data, genomics, and proteomics tracks. Pairwise alignments using BLASTp were performed using the sequences of the completed models to find orthologues in other insects for additional support. Table 1 contains a list of the top results found in closely related insects as well as their ID, Query coverage, and bit score. The listed insects include: *Acyrthosiphon pisum, Cimex lectularius, Anopheles gambiae, Aedes aegypti,* and *Culex quinquefasciatus*.

The sequences from the annotated models were collected in FASTA format. Sequences of the same genes from other insects were found in NCBI and collected as FASTA files. Using a total of 38 sequences a multiple sequence alignment was made with default MUSCLE settings within MEGA 7. The phylogenetic tree was made with sequences from the following organisms: *Apis mellifera, Apis Dorsata, Bactrocera cucurbitae, Ceratitis capitate, Culex quinquefasciatus, Cimex lectularius, Acyrthosiphon pisum, Bombus impatiens, Nicrophorus vespilloides, Stomoxys calcitrans, Athalia rosae, Plutella xylostella, Homo sapiens, Pediculus humanus corporis, and Bombyx mori.* The names of most of the genes were simplified to abbreviations, and the species names to the first

letter of the genus name and the whole species name. A neighbor joining tree was then made, based on the previous alignment, with 1000 replicates for bootstrap, Poisson model, and pairwise deletion also within MEGA 7.

Results and Discussion

Ten C-type lectin gene models were located and annotated after using orthologs from closely related insects including A. pisum, Drosophila melanogastor, Anopheles gambiae, Aedes aegypti, Culex guinguefasciaitus and Cimex lectulius. Most of the models had a Ctype Lectin domain that BLAST was able to detect. A multiple alignment was constructed which illustrated sections of conserved sequence. The phylogenetic tree shows that I have indeed found and annotated CTLs, like oxidized low- density lipoprotein receptor, due to their location on the tree in relation to orthologs (Figure 1). Even though the CTLs are conserved from metazoans to humans, there are little to no similarities between CTLs of vertebrates and invertebrates (Dodd and Drickamer 2001). SVEP had not paired with the orthologs found in *H.* sapiens. The lack of accurate pairing possibly indicates that there is a need for more sequences of more closely related organisms to illustrate relations, which was not available. 10 CTL sequences were found and annotated in the Diaphorina citri genome while 34 have been found in Drosophila melanogaster, 25 in Anopheles gambiae, 10 in Apis mellifera, and 16 in Tribolium castaneum (Tanaka et al. 2008). A comparison to the numbers of CTLs found in those insects show that possibly with better sequence and expression data there might be more CTLs found in the citrus psyllid's genome. Since these sequences have been supported as probable CTLs as more sequence data is available they could be knocked out with RNAi to determine if it could reduce the citrus psyllid population and prevent the spread of citrus greening.

Table 1: A comparison table between *D.citri* and *A. pisum, D. melanogastor, A. gambiae, A. aegypti, C. quinquefasciaitus* and *C. lectulius* derived from the BLAST results. Lists amino acid length of *D.citri* genes, their domains, query coverage, identity, and bit score.

Diaphorina citri gene comparison

Dcitr-	AA	Domains			
oxidized low density lipoprotein receptor 1	140	[1]smart0003	CLECT (CTL or CRD)		
oxidized low density lipoprotein receptor 1	134	[1]cd00037	CLECT (CTL or CRD)		
oxidized low density lipoprotein receptor 1	93	N/A	N/A		
Agglucetin subunit alpha-1	156	[1]smart0003	CLECT (CTL or CRD)		
C-type Lectin 8	283	[1]cd00037	CLECT (CTL or CRD)		
C-type Lectin 3	188	[2]cd00037, [4]cd00041, [2]pfam00008, [1]cd00054	CLECT (CTL or CRD), CUB, EGF, EGF-CA		
C-type Lectin 5	2355	[1]cd00020, [1]cd03590, [5]cd00033	ARM, CLECT DC-SIGN, CCP		
E selectin	697	[1]pfam00754, [1]cd03590, [4]smart00032, [3]pfam00084	F5/8type C domain (discoidin; DS), CLECT DC-SIGN, CCP, Sushi		
Selectin-like osteoblast-derived protein	794	[1]cd03591, [1]smart00034	CLECT (CTL or CRD), CLECT collectin like		
Perlucin	128	[1]cd00037	CLECT (CTL or CRD)		
Dcitr-	AA	Domains			
oxidized low density lipoprotein receptor 1	140	[1]smart0003	CLECT (CTL or CRD)		
oxidized low density lipoprotein receptor 1	134	[1]cd00037	CLECT (CTL or CRD)		
oxidized low density lipoprotein receptor 1	93	N/A	N/A		
Agglucetin subunit alpha-1	156	[1]smart0003	CLECT (CTL or CRD)		
C-type Lectin 8	283	[1]cd00037	CLECT (CTL or CRD)		
C-type Lectin 3	188	[2]cd00037, [4]cd00041, [2]pfam00008, [1]cd00054	CLECT (CTL or CRD), CUB, EGF, EGF-CA		
C-type Lectin 5	2355	[1]cd00020, [1]cd03590, [5]cd00033	ARM, CLECT DC-SIGN, CCP		
E selectin	697	[1]pfam00754, [1]cd03590, [4]smart00032, [3]pfam00084	F5/8type C domain (discoidin; DS), CLECT DC-SIGN, CCP, Sushi		
Selectin-like osteoblast-derived protein	794	[1]cd03591, [1]smart00034	CLECT (CTL or CRD), CLECT collectin like		
Perlucin	128	[1]cd00037	CLECT (CTL or CRD)		

A. pisum						
Name	Accession	query	ID	Bit Score		
PREDICTED: oxidized low-density lipoprotein receptor 1	XP_003245001.1	53%	56%	254		
PREDICTED: oxidized low-density lipoprotein receptor 1	XP_003245001.1	75%	56%	342		
PREDICTED: oxidized low-density lipoprotein receptor 1	XP_003245001.1	94%	52%	244		
NA	NA	NA	NA	NA		
PREDICTED: mucin-5AC	XP_001945032.2	91%	66%	663		
PREDICTED: uncharacterized protein LOC100159662	XP_001950366.1	98%	77%	811		
PREDICTED: uncharacterized protein LOC100167178 isoform X4	XP_016657887.1	61%	43%	1255		
PREDICTED: sushi, von Willebrand factor type A, EGF and pentraxi	XP_001948504.2	66%	30%	458		
PREDICTED: sushi, von Willebrand factor type A, EGF and pentraxi	XP_001948504.2	91%	27%	464		
PREDICTED: perlucin isoform X2	XP_016663197.1	80%	60%	430		
A. aegypti						
Name	Accession	query	ID	Bit Score		
CTL9	XP_001663957.1	54%	44%	182		
CTL9	XP_001663957.1	73%	36%	206		
CTL9	XP_001663957.1	93%	46%	180		
AAEL006825-PA	XP_001658055.1	66%	45%	252		
CTL8	XP_001661274.2	78%	67%	631		
CTLGA3	XP_001655089.1	98%	78%	833		
CTL5	XP_001661639.2	13%	39%	467		
C-Type Lectin (CTL) - selectin like	XP_001653527.2	69%	59%	1507		
C-Type Lectin (CTL) - selectin like	XP_001653527.2	95%	43%	1571		
C-Type Lectin (CTL) - mannose binding	XP_011493611.1	80%	63%	436		

C.lectularius						
Name	Accessi	on	query	ID	Bit Score	
PREDICTED: oxidized low-density lipop	XP_014254	818.1	54%	50%	223	
PREDICTED: oxidized low-density lipop	protein receptor 1-like	XP_014254	818.1	70%	63%	333
PREDICTED: oxidized low-density lipop	protein receptor 1-like	XP_014254	818.1	96%	50%	211
NA		NA		NA	NA	NA
PREDICTED: uncharacterized protein L	OC106673215 isoform	XP_014260	729.1	91%	71%	679
PREDICTED: uncharacterized protein L	OC106666810	XP_014249	760.1	98%	81%	865
PREDICTED: uncharacterized protein L	OC106663479 isoform	XP_014243	827.1	84%	36%	1811
PREDICTED: CUB and sushi domain-co	XP_014245	415.1	85%	58%	1759	
PREDICTED: CUB and sushi domain-co	ntaining protein 3	XP_014245	415.1	95%	42%	1626
PREDICTED: perlucin isoform X2		XP_014243	366.1	81%	58%	397
		A. gambiae				
Name		Accessi	on	query	ID	Bit Score
CTL9		XP_312307.1		53%	43%	170
CTL9	XP_31230	07.1	73%	33%	204	
CTL9		XP_312307.1		59%	62%	191
CTL7		XP_309125.4		89%	45%	366
CTL8		XP_313387.4		91%	64%	618
CTLGA3		XP_319371.2		98%	77%	822
CTL5		XP_310650.4		70%	38%	2059
C-Type Lectin (CTL) - selectin like		XP_309111.3		78%	59%	1529
C-Type Lectin (CTL) - selectin like		XP_309111.3		96%	42%	1562
C-Type Lectin (CTL) - mannose binding		XP_315346.4 80%		80%	63%	420
D.melanogaster						
Name	Accession	query	ID	Bit Score		

Name	Accession	query	ID	Bit Score		
C-type Lectin	NP_001138057.1	53%	43%	174		
C-type Lectin	NP_001138057.1	66%	39%	235		
C-type Lectin	NP_650444.1	64%	61%	187		
C-type Lectin	NP_572269.1	89%	45%	355		
narrow, isoform B	NP_001188963.1	90%	64%	613		
C-type lectin 27kD, isoform A	NP_608858.3	98%	74%	798		
cubilin ortholog	NP_727348.2	28%	32%	213		
furrowed, isoform A	NP_511136.2	80%	56%	1494		
furrowed, isoform A	NP_511136.2	95%	41%	1521		
triforce, isoform A	NP_728586.1	81%	68%	445		
C. quinquefasciatus						
Name	Accession	query	ID	Bit Score		
conserved hypothetical protein	XP_001847975.1	57%	41%	169		
conserved hypothetical protein	XP_001847975.1	73%	37%	210		
NA	NA	NA	NA	NA		
conserved hypothetical protein	XP_001868565.1	68%	45%	261		
conserved hypothetical protein	XP_001866032.1	78%	66%	626		
conserved hypothetical protein	XP_001847297.1	98%	79%	844		
conserved hypothetical protein	XP_001862639.1	16%	43%	760		
furrowed	XP_001869209.1	71%	28%	434		
furrowed	XP_001869209.1	78%	32%	343		
galactose-specific C-type lectin	XP_001842113.1	58%	45%	161		

Figure1: Phylogenetic tree consisting of *Diaphorina citri* C-type Lectins and the same genes from other insects. The C-type Lectins found in *D.citri* are the following: oxidized low density lipoprotein receptor (OLR), C-type Lectin 3 (CTL3), C-type Lectin 5 (CTL5), E selectin (ESEL), Perlucin, Agglucetin subunit alpha, and selectin like osteoblast derived protein (SVEP). The species names of the additional organisms are shown next to the gene name. An ortholog from another insect could not be found for Agglucetin. Only a human ortholog could be found for SVEP. High bootstrap values show that some genes like OLR are closely related to those in other insects. OLR is also known as CTL8A.

References

- 1. Cambi A and Figdor CG. 2003. Dual function of c-type lectin-like receptors in the immune system. Curr Opin Cell Biol. 15:539-546. PMID: 14519388
- Dodd RB and Drickamer K. 2001. Lectin-like proteins in model organisms: implications for evolutions of carbohydrate- binding activity. Glycobiology 11(5):71R-79R. PMID: 11425795
- Tanaka H, Ishibashi J, Fujita K, Nakajima Y, Sagisaka A, Tomimoto, K, Suzuki, N, Yoshiyama, M, Kaneko, Y, Iwasaki, T, Sunagawa, T, Yamaji, K, Asaoka, A, Mita, K, Yamakawa, M. 2008. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem Mol Biol 38(12): 1087-1110. PMID: 18835443
- 4. Weis WI, Taylor ME, and Drickamer K. 1998. The c-type lectin superfamily in the immune system. Immunological Reviews 163:19-34. PMID: 9700499